Hydroponics from Amazon.com

The following content is from Wikipedia.

Hydroponics is a subset of hydroculture and is a method of growing plants using mineral nutrient solutions, in water, without soil. Terrestrial plants may be grown with their roots in the mineral solution only, or in an inert medium, such as perlite or gravel. The nutrients in hydroponics can be from fish waste, normal nutrients, or duck manure.


The earliest published work on growing terrestrial plants without soil was the 1627 book Sylva Sylvarum by Francis Bacon, printed a year after his death. Water culture became a popular research technique after that. In 1699, John Woodward published his water culture experiments with spearmint. He found that plants in less-pure water sources grew better than plants in distilled water. By 1842, a list of nine elements believed to be essential for plant growth had been compiled, and the discoveries of German botanists Julius von Sachs and Wilhelm Knop, in the years 1859–1875, resulted in a development of the technique of soilless cultivation. Growth of terrestrial plants without soil in mineral nutrient solutions was called solution culture. It quickly became a standard research and teaching technique and is still widely used. Solution culture is now considered a type of hydroponics where there is no inert medium.

In 1929, William Frederick Gericke of the University of California at Berkeley began publicly promoting that solution culture be used for agricultural crop production. He first termed it aquaculture but later found that aquaculture was already applied to culture of aquatic organisms. Gericke created a sensation by growing tomato vines twenty-five feet high in his back yard in mineral nutrient solutions rather than soil. He introduced the term hydroponics, water culture, in 1937, proposed to him by W. A. Setchell, a phycologist with an extensive education in the classics. Hydroponics is derived from neologism ὑδρωρπονικά, constructed in analogy to γεωπονικά, geoponica, that which concerns agriculture, replacing, γεω-, earth, with ὑδρω-, water.

Reports of Gericke’s work and his claims that hydroponics would revolutionize plant agriculture prompted a huge number of requests for further information. Gericke had been denied use of the University’s greenhouses for his experiments due to the administration’s skepticism, and when the University tried to compel him to release his preliminary nutrient recipes developed at home he requested greenhouse space and time to improve them using appropriate research facilities. While he was eventually provided greenhouse space, the University assigned Hoagland and Arnon to re-develop Gericke’s formula and show it held no benefit over soil grown plant yields, a view held by Hoagland. In 1940, Gericke published the book, Complete Guide to Soil less Gardening, after leaving his academic position in a climate that was politically unfavorable.

Two other plant nutritionists at the University of California were asked to research Gericke’s claims. Dennis R. Hoagland and Daniel I. Arnon wrote a classic 1938 agricultural bulletin, The Water Culture Method for Growing Plants Without Soil. Hoagland and Arnon claimed that hydroponic crop yields were no better than crop yields with good-quality soils. Crop yields were ultimately limited by factors other than mineral nutrients, especially light. This research, however, overlooked the fact that hydroponics has other advantages including the fact that the roots of the plant have constant access to oxygen and that the plants have access to as much or as little water as they need. This is important as one of the most common errors when growing is over- and under- watering; and hydroponics prevents this from occurring as large amounts of water can be made available to the plant and any water not used, drained away, recirculated, or actively aerated, eliminating anoxic conditions, which drown root systems in soil. In soil, a grower needs to be very experienced to know exactly how much water to feed the plant. Too much and the plant will be unable to access oxygen; too little and the plant will lose the ability to transport nutrients, which are typically moved into the roots while in solution. These two researchers developed several formulas for mineral nutrient solutions, known as Hoagland solution. Modified Hoagland solutions are still in use.

One of the earliest successes of hydroponics occurred on Wake Island, a rocky atoll in the Pacific Ocean used as a refuelling stop for Pan American Airlines. Hydroponics was used there in the 1930s to grow vegetables for the passengers. Hydroponics was a necessity on Wake Island because there was no soil, and it was prohibitively expensive to airlift in fresh vegetables.

In the 1960s, Allen Cooper of England developed the Nutrient film technique. The Land Pavilion at Walt Disney World’s EPCOT Center opened in 1982 and prominently features a variety of hydroponic techniques. In recent decades, NASA has done extensive hydroponic research for its Controlled Ecological Life Support System (CELSS). Hydroponics intended to take place on Mars are using LED lighting to grow in a different color spectrum with much less heat.

Gericke originally defined hydroponics as crop growth in mineral nutrient solutions. Hydroponics is a subset of soilless culture. Many types of soilless culture do not use the mineral nutrient solutions required for hydroponics.

Plants that are not traditionally grown in a climate would be possible to grow using a controlled environment system like hydroponics. NASA has also looked to utilize hydroponics in the space program. Ray Wheeler, a plant physiologist at Kennedy Space Center’s Space Life Science Lab, believes that hydroponics will create advances within space travel. He terms this as a bioregenerative life support system.

There are two main variations for each medium, sub-irrigation and top irrigation. For all techniques, most hydroponic reservoirs are now built of plastic, but other materials have been used including concrete, glass, metal, vegetable solids, and wood. The containers should exclude light to prevent algae growth in the nutrient solution.

Hydroponics from Amazon.com

In static solution culture, plants are grown in containers of nutrient solution, such as glass Mason jars (typically, in-home applications), plastic buckets, tubs, or tanks. The solution is usually gently aerated but may be un-aerated. If un-aerated, the solution level is kept low enough that enough roots are above the solution so they get adequate oxygen. A hole is cut in the lid of the reservoir for each plant. There can be one to many plants per reservoir. Reservoir size can be increased as plant− size increases. A home made system can be constructed from plastic food containers or glass canning jars with aeration provided by an aquarium pump, aquarium airline tubing and aquarium valves. Clear containers are covered with aluminium foil, butcher paper, black plastic, or other material to exclude light, thus helping to eliminate the formation of algae. The nutrient solution is changed either on a schedule, such as once per week, or when the concentration drops below a certain level as determined with an electrical conductivity meter. Whenever the solution is depleted below a certain level, either water or fresh nutrient solution is added. A Mariotte’s bottle, or a float valve, can be used to automatically maintain the solution level. In raft solution culture, plants are placed in a sheet of buoyant plastic that is floated on the surface of the nutrient solution. That way, the solution level never drops below the roots.

Continuous-flow solution culture.

In continuous-flow solution culture, the nutrient solution constantly flows past the roots. It is much easier to automate than the static solution culture because sampling and adjustments to the temperature and nutrient concentrations can be made in a large storage tank that has potential to serve thousands of plants. A popular variation is the nutrient film technique or NFT, whereby a very shallow stream of water containing all the dissolved nutrients required for plant growth is recirculated past the bare roots of plants in a watertight thick root mat, which develops in the bottom of the channel and has an upper surface that, although moist, is in the air. Subsequent to this, an abundant supply of oxygen is provided to the roots of the plants. A properly designed NFT system is based on using the right channel slope, the right flow rate, and the right channel length. The main advantage of the NFT system over other forms of hydroponics is that the plant roots are exposed to adequate supplies of water, oxygen, and nutrients. In all other forms of production, there is a conflict between the supply of these requirements, since excessive or deficient amounts of one results in an imbalance of one or both of the others. NFT, because of its design, provides a system where all three requirements for healthy plant growth can be met at the same time, provided that the simple concept of NFT is always remembered and practised. The result of these advantages is that higher yields of high-quality produce are obtained over an extended period of cropping. A downside of NFT is that it has very little buffering against interruptions in the flow (e.g. power outages). But, overall, it is probably one of the more productive techniques.

The same design characteristics apply to all conventional NFT systems. While slopes along channels of 1:100 have been recommended, in practice it is difficult to build a base for channels that is sufficiently true to enable nutrient films to flow without ponding in locally depressed areas. As a consequence, it is recommended that slopes of 1:30 to 1:40 are used. This allows for minor irregularities in the surface, but, even with these slopes, ponding and water logging may occur. The slope may be provided by the floor, or benches or racks may hold the channels and provide the required slope. Both methods are used and depend on local requirements, often determined by the site and crop requirements.

As a general guide, flow rates for each gully should be 1 liter per minute. At planting, rates may be half this and the upper limit of 2 L/min appears about the maximum. Flow rates beyond these extremes are often associated with nutritional problems. Depressed growth rates of many crops have been observed when channels exceed 12 metres in length. On rapidly growing crops, tests have indicated that, while oxygen levels remain adequate, nitrogen may be depleted over the length of the gully. As a consequence, channel length should not exceed 10–15 metres. In situations where this is not possible, the reductions in growth can be eliminated by placing another nutrient feed halfway along the gully and halving the flow rates through each outlet.

Hydroponics from Amazon.com